Low Pressure Fuel Evaporative Testing Workshop

Bureau of Automotive Repair & California Air Resources Board

April 2006

Introduction (ARB staff)

- -Evaporative Emissions
- Need for a Low PressureEvaporative Test
- -Benefits

What Are Evaporative Emissions?

Purge Side (Repair Inspection)

Tank Test (Pressure Side) 3

Example of Fuel Tank Leak

(photo from repair study)

Pressure test can identify potential liquid leaks

Light Duty Vehicle Hydrocarbon Emissions Calendar Year 2010, Model Years 1976-1995 Tons per Day with Current I/M Program

Excess LDV Evaporative Hydrocarbons Calendar Year 2010, Model Years 1976-1995 Tons per Day

Health Impacts

- •Ozone exposure aggravates asthma and causes long-term lung damage to children
- •Cardiovascular and immune system function decrease during smog episodes
- •Benzene from gasoline vapor is a major source of airborne cancer risk
 - -240 excess cancer cases per million people in 2003

The Need for Low Pressure Testing

- Californians breathe too much unhealthy air
 - Fuel vapors are major source of reactive hydrocarbons, a key ingredient in smog
- ARB & BAR committed to U.S. EPA to implement low pressure evaporative system testing in California
 - Last unfulfilled commitment in August 17, 2000 letter to
 U.S. EPA pledging smog check program improvements
- Failure to implement jeopardizes \$2.5 billion in transportation funding due to federal conformity rules
- Included in EPA's Enhanced Smog Check Performance Standard

Benefits

- Projected reductions 14 tons per day statewide
- \$6688 per ton cost effectiveness is favorable (e.g., Moyer program threshold \$14,300)
- Increased liquid leak identification (source of gross evaporative emissions)
- Prevention of fuel related hazards
- Reduction of air toxics, especially Benzene
- Reduced VOC Infiltration from attached garages
- Fuel Savings to Consumers

Introduction (BAR staff)

BAR

- Current Testing
- Proposed Testing
- Test Procedure
- Fact Sheet
- What Happens Next

Current Evaporative Testing

- Evaporative system visual inspection
- Fuel cap testing
- Liquid leak check
- OBD II implementation

Proposed Low-Pressure Fuel Evaporative Testing (LPFET)

- Overview
 - 1976-1995 vehicles, statewide
 - Functional test of fuel tank and vapor lines:
 - Pressurize evaporative system at filler neck
 - Assess Pass/Fail at 0.040 inch equivalent leak size
 - Estimate leak size, if any, accounting for vapor space, vapor pressure

Test Video

Leak Detection / Test Procedure

- Enter limited vehicle information
- Install filler neck adapter and pressure hose
- Pinch / seal line near canister
- Run test
- If fail, verify seal as directed, perform retest
- Remove tester and pliers
- Enter result into BAR-97

Demonstration

- Device Overview
- •Electronic Pinch Point Locator
- •Equipment Available for Hands On
- Manual Mode Video

Systech Low Pressure Fuel Evaporative Tester (LPFET)

ESP/Waekon Low Pressure Fuel Evaporative Tester (LPFET)

Screen Shot - Electronic Pinch Point Database

It Failed. Now What?

- Tester has built-in manual mode with audio feedback
 - Can be used with gas analyzer & soapy water/spray bottle to locate leaks
 - Visual check for leaks
- Leaks
 - loose, cracked tubing & filler neck coupling
 - cracked or missing component
 - perforated tank or sending unit o-ring

Manual Mode Video

- Pressurizes to ½ psi (14 inches of water)
- Beeps faster for large leak & slower for small leak
- Crimp hose sections to isolate leak location
- Use BAR97 to sniff for hydrocarbons
- Use soapy water to locate leak

Manual Mode Video

Fact Sheet

- 5.2 Million 1976-1995 vehicles smog tested in 2005
- 10.6% estimated failure rate based upon roadside and Alpha studies
- Approximately ½ million vehicles will fail the low fuel evaporative test annually (2005 implementation)
- Test time depends on crimp location and tank vapor space
 - Average test time is about 8 minutes
 - Production unit software may cut tester decision time by 1-2 minutes
 - Large tank volumes > 25 gallons or high temperatures may take about 11 minutes

Fact Sheet (continued)

- \$161 Average repair cost per ARB
 - Ave. Smog labor rate \$74/hr.
- Tester cost \$2000-3000
 - 2 manufacturers have submitted equipment to BAR
 - 1 year warranty

What Happens Next?

• Written comments to BAR by May 15, 2006

Bureau of Automotive Repair

Attn: LPFET Workgroup 10240 Systems Parkway Sacramento CA 95827

- BAR/ARB to consider industry comments when developing regulations
- BAR to certify evaporative test equipment after regulations adopted

Summary

- California has a commitment to air quality
- These workshops are to solicit your input on how to move forward with implementation and for comments on things we may have overlooked.

Questions and Answers